Food Funct. 2026 Feb 3. doi: 10.1039/d5fo04423e. Online ahead of print.
ABSTRACT
Hyperuricemia (HUA) has become a worldwide metabolic disease, which can lead to acute gout attacks, renal dysfunction, uric acid (UA) urolithiasis, and cardiovascular damage. Probiotics, known for their cost-effectiveness, minimal toxic side effects, and high safety profile, have shown potential in alleviating HUA. In the present study, the beneficial function of Lactobacillus plantarum TY-S8 on HUA and related mechanisms were comprehensively investigated by constructing a mice model of hyperuricaemia, combined with the use of microbiomics and metabolomics. Our results demonstrated that L. plantarum TY-S8 markedly lowered serum UA (SUA) concentrations by 22.41%, suppressed xanthine oxidase (XOD) activity and modulated the level of key transporters, including GLUT9, ABCG2, and NTP1. Furthermore, the pathological damage in the liver, kidney and colon of hyperuricemic mice was alleviated by the probiotics. Meanwhile, the strain upregulated the levels of occludin, a key tight junction protein, and promoted the synthesis of short-chain fatty acids (SCFAs), with a notable increase in butyric acid. Microbiome sequencing and analysis revealed that L. plantarum TY-S8 significantly increased the proportions of Lactobacillus johnsonii and Limosilactobacillus reuteri. Additionally, metabolomic analysis of fecal and blood samples indicated that the differential metabolites among the three groups were primarily indole derivatives, such as indole-3-acetic acid (IAA), indole-3-lactic acid (ILA), and indole-3-acetaldehyde (IAAld), which are involved in the tryptophan metabolism pathway. Notably, there is a clear correlation between the key bacterial strains and these differential metabolites. At last, fecal microbiota transplantation (FMT) was performed to confirm that the ameliorative effect of L. plantarum TY-S8 on the hyperuricemic mice is primarily mediated by the regulation of gut microbiota and tryptophan metabolites. In conclusion, L. plantarum TY-S8 exerts probiotic effects on hyperuricemic mice through multiple pathways. In particular, it alleviates intestinal inflammation by regulating tryptophan metabolism, thereby effectively promoting uric acid metabolism, which highlights its potential value in the intervention of HUA.
PMID:41632104 | DOI:10.1039/d5fo04423e

